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Chapter 1

Motivating Problems of Measure
Theory

1.1 The Problem of Measurement

A basic (and very old) problem in mathematics is to compute the size (length, area, volume) of
geometric objects. Areas of polygons and circles can be computed by elementary methods. More
complicated regions bounded by continuous curves can be attacked with methods from calculus.
But what about more general subsets of Euclidean space? Does it always make sense to talk about
the (hyper-)volume of a subset of Rd? What properties does volume have, and how do we compute
it?

We will consider these general questions as the “problem of measurement” in Euclidean space
and discuss some approaches to a solution.

1.2 Riemann Integration and Jordan Content

A good first attempt at solving the problem of measurement comes from the Riemann theory of
integration. The basic strategy is to approximate general regions by finite collections of boxes (sets
of the form B =

∏d
i=1[ai, bi]). For such a box B, we declare the volume to be Vol(B) =

∏d
i=1(bi−ai)

and use this to define the volume of more general regions. We will now make this idea rigorous.

Definition 1.1. Let B =
∏d

i=1[ai, bi] be a box in Rd, and let f : B → R be a bounded function.

• A Darboux partition of B is a family of finite sequences (xi,j)1≤i≤d,0≤j≤ni
such that ai =

xi,0 < xi,1 < · · · < xi,ni = bi for each i ∈ {1, . . . , d}.

Figure 1.1: A Darboux partition in dimension d = 2 with n1 = 4 and n2 = 6.
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6 CHAPTER 1. MOTIVATING PROBLEMS OF MEASURE THEORY

• Given a Darboux partition P = (xi,j)1≤i≤d,0≤j≤ni
of B, the upper and lower Darboux sums

of f over B are given by

UB(f, P ) =
∑

j∈
∏d

i=1{1,...,ni}

sup
x∈Bj

f(x) ·Vol(Bj)

and

LB(f, P ) =
∑

j∈
∏d

i=1{1,...,ni}

inf
x∈Bj

f(x) ·Vol(Bj),

where Bj is the box
∏d

i=1[xi,ji−1, xi,ji ], and Vol(Bj) =
∏d

i=1(xi,ji − xi,ji−1) is the volume of
Bj.

y = f(x)

x

y

y = f(x)

x

y

Figure 1.2: Upper (red) and lower (blue) Darboux sums of a function f over an interval (d = 1).

• The upper and lower Darboux integral of f over B are

UB(f) = inf{UB(f, P ) : P is a Darboux partition of B}

and

LB(f) = sup{LB(f, P ) : P is a Darboux partition of B}.

• The function f is Darboux integrable over B if UB(f) = LB(f), and their common value is
called the Darboux integral of f over B and is denoted by

∫
B f(x) dx.

Proposition 1.2. A function f is Darboux integrable if and only if it is Riemann integrable.
Moreover, the value of the Darboux integral and the Riemann integral (for a Riemann–Darboux
integrable function) are the same.

Definition 1.3. A bounded set E ⊆ Rd is a Jordan measurable set if 1E is Riemann–Darboux
integrable over a box containing E. The Jordan content of a Jordan measurable set E is the value
J(E) =

∫
B 1E(x) dx, where B is any box containing E.

Jordan measurable sets include basic geometric objects such as polyhedra, conic sections, regions
bounded by finitely many smooth curves/surfaces, etc.

Definition 1.4. A set S ⊆ Rd is a simple set if it is a finite union of boxes S =
⋃k

j=1Bj .
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If the boxes B1, . . . , Bk are disjoint, then the volume of the simple set S =
⋃k

j=1Bj is Vol(S) =∑k
j=1Vol(Bj). If some of the boxes intersect, then the volume of S =

⋃k
j=1Bj can be computed

using inclusion-exclusion:

Vol(S) =

k∑
j=1

Vol(Bj)−
∑

1≤j1<j2≤k

Vol(Bj1 ∩Bj2) +
∑

1≤j1<j2<j3≤k

Vol(Bj1 ∩Bj2 ∩Bj3)− . . .

This expression is well-defined, since the intersection of two boxes is again a box. A Jordan
measurable set is a set that is “well-approximated” by simple sets, as we will make precise now.

Definition 1.5. For a bounded set E ⊆ Rd, define the inner and outer Jordan content by

J∗(E) = sup {Vol(S) : S ⊆ E is a simple set} .

and

J∗(E) = inf {Vol(S) : S ⊇ E is a simple set} .

Figure 1.3: Simple sets approximating the inner (red) and outer Jordan content (blue) of a region
in dimension d = 2. With the red boxes removed from the blue, we get a simple set covering the
boundary (in green).

Theorem 1.6. Let E ⊆ Rd be a bounded set. The following are equivalent:

(i) E is Jordan measurable;

(ii) J∗(E) = J∗(E) (in which case J(E) is equal to this same value);

(iii) J∗(∂E) = 0.

Proof. We will prove the d = 1 case. The multidimensional case is similar but more notationally
cumbersome, so we omit it to avoid additional technical details that would largely obscure the main
ideas.

(i) ⇐⇒ (ii). To establish this equivalence, it suffices to show

UB(1E) = J∗(E) and LB(1E) = J∗(E)

for any box (interval) B ⊇ E. Let us prove UB(1E) = J∗(E).

Claim: UB(1E) ≤ J∗(E).
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Let ε > 0. Then from the definition of the outer Jordan content, there exists a simple set S ⊆ R
such that E ⊆ S and Vol(S) < J∗(E) + ε. By assumption, B is an interval containing E, so S ∩B
is also a simple set containing E, and Vol(S ∩B) ≤ Vol(S) < J∗(E)+ ε. We may therefore assume
without loss of generality that S ⊆ B. Write B = [a, b] and S = [a1, b1] ⊔ [a2, b2] ⊔ · · · ⊔ [an, bn]
with a ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn ≤ b. We define a Darboux partition1 P of [a, b] by
P = (xi)

2n+1
i=0 with x0 = a, x1 = a1, x2 = b1, . . . , x2n−1 = an, x2n = bn, x2n+1 = b. Then since

E ⊆ S, we have

UB(1E , P ) =
2n+1∑
i=1

sup
xi−1≤x≤xi

1E(x) · (xi − xi−1)

≤ 0 · (a1 − a) + 1 · (b1 − a1) + 0 · (a2 − b1) + · · ·+ 1 · (bn − an) + 0 · (b− bn)

= Vol(S).

Hence, UB(1E) ≤ UB(1E , P ) ≤ Vol(S) < J∗(E) + ε. This proves the claim.

Claim: J∗(E) ≤ UB(1E).

Let ε > 0. Write B = [a, b]. Then there exists a Darboux partition a = x0 < x1 < · · · < xn = b
such that UB(1E , P ) < UB(1E)+ε. Let Mi = supxi−1≤x≤xi

1E(x) ∈ {0, 1}, and note that, by defini-
tion, UB(1E , P ) =

∑n
i=1Mi(xi−xi−1). Let I ⊆ {1, . . . , n} be the set I = {1 ≤ i ≤ n : Mi = 1}, and

let S =
⋃

i∈I [xi−1, xi]. Then S is a simple set with length Vol(S) =
∑

i∈I(xi − xi−1) = UB(1E , P ).
Moreover, E ⊆ S, since S is the union of all intervals that have nonempty intersection with E.
Thus, J∗(E) ≤ Vol(S) = UB(1E , P ) < UB(1E) + ε.

The identity LB(1E) = J∗(E) is proved similarly.

(ii) ⇐⇒ (iii). It suffices to prove J∗(∂E) = J∗(E)− J∗(E). (See Figure 1.3.)

Claim: J∗(∂E) ≤ J∗(E)− J∗(E).

Let ε > 0. Let S1 be a simple set such that E ⊆ S1 and Vol(S1) < J∗(E) + ε
2 . Since S1 is

closed, we have E ⊆ S1. Let S2 be a simple set with S2 ⊆ E such that Vol(S2) > J∗(E)− ε
2 . Note

that int(S2) ⊆ int(E). Therefore, S = S2 \ int(S1) is a simple set and ∂E = E \ int(E) ⊆ S, so
J∗(∂E) ≤ Vol(S) = Vol(S2) − Vol(S1) < J∗(E) − J∗(E) + ε. But ε was arbitrary, so we conclude
J∗(∂E) ≤ J∗(E)− J∗(E).

Claim: J∗(E)− J∗(E) ≤ J∗(∂E).

Let ε > 0, and let S ⊇ ∂E be a simple set with Vol(S) < J∗(∂E) + ε
2 . Write S =

⊔n
i=1[ai, bi]

with a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn. Let [a, b] ⊆ R such that E ⊆ [a, b] and a < a1 and b < bn.
For notational convenience, let b0 = a and an+1 = b. Let I ⊆ {0, . . . , n} be the collection of indices
i such that (bi, ai+1) ∩ E ̸= ∅. For each i ∈ I, we claim that (bi, ai+1) ⊆ E. If not, then (bi, ai+1)
contains a boundary point of E, but ∂E ⊆ S, so this is a contradiction. Thus, S′ =

⋃
i∈I [bi, ai+1]

is a simple set with int(S′) ⊆ E. Shrinking slightly each interval in S′, we obtain a simple set

S′′ =
⋃
i∈I

[
bi +

ε

4(n+ 1)
, ai+1 −

ε

4(n+ 1)

]
1Strictly speaking, this may fail to be a Darboux partition, since some of the points are allowed to coincide.

However, the value we compute for UB(1E , P ) will be the correct value for the partition where we remove repetitions
of the same point.
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such that S′′ ⊆ E. Moreover, Vol(S′′) ≥ Vol(S′)− ε
2(n+1) |I| ≥ Vol(S′)− ε

2 . Noting that S ∪ S′ is a
simple set containing E, we arrive at the inequality

J∗(E)− J∗(E) ≤ Vol(S ∪ S′)−Vol(S′′) = Vol(S) + Vol(S′)−Vol(S′′) < J∗(∂E) + ε.

Example 1.7. The sets Q ∩ [0, 1] and [0, 1] \Q are not Jordan measurable (see Problem 1.1).

In addition to the above example, there are many other “nice” sets that are not Jordan mea-
surable. There are, for instance, bounded open sets in R that are not Jordan measurable. We will
work out one such example in detail.

Example 1.8. The complement U of the fat Cantor set (also known as the Smith–Volterra–
Cantor set) K ⊆ [0, 1] is Jordan non-measurable. We construct K iteratively, starting from [0, 1],
by removing intervals of length 4−n at step n. In other words, at step n, we remove an interval of
length 4−n around each rational point with denominator 2n.

Figure 1.4: Iterative construction of the fat Cantor set.

Let

U =
∞⋃
n=0

2n⋃
j=1

(
2j + 1

2n+1
− 1

2 · 4n+1
,
2j + 1

2n+1
+

1

2 · 4n+1

)
.

Then K = [0, 1] \ U .
The inner Jordan content of U is

J∗(U) =
∞∑
n=0

2n∑
j=1

Len

(
2j + 1

2n+1
− 1

2 · 4n+1
,
2j + 1

2n+1
+

1

2 · 4n+1

)
=

∞∑
n=0

2n · 1

4n+1
=

1

4

∞∑
n=0

2−n =
1

2
.

However, U = [0, 1] (since U contains every rational number whose denominator is a power of
2), so the outer Jordan content of U is J∗(U) = J∗([0, 1]) = 1.

1.3 Limits of Integrable Functions

You may recall from the theory of Riemann integration that uniform limits of Riemann integrable
functions are Riemann integrable, and one may in this case interchange the order of taking limits
and computing the integral. More precisely:

Theorem 1.9. Let B be a box in Rd. Let (fn)n∈N be a sequence of Riemann integrable functions
on B, and suppose fn converges uniformly to a function f : B → R. Then f is Riemann integrable,
and ∫

B
f(x) dx = lim

n→∞

∫
B
fn(x) dx.

One of the deficiencies of the Riemann–Darboux–Jordan approach to integration and measure-
ment is that pointwise (non-uniform) limits do not share this property.
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Example 1.10. Enumerate the set Q∩ [0, 1] = {q1, q2, . . . }. Let fn : [0, 1] → [0, 1] be the function

fn(x) =

{
1, if x ∈ {q1, . . . , qn}
0, otherwise.

Then fn is Riemann integrable and fn → 1Q∩[0,1] pointwise, but 1Q∩[0,1] is not Riemann integrable.

Since analysis so often deals with limits, it is desirable to develop a theory of integration
that accommodates pointwise limits. The Lebesgue measure and Lebesgue integral resolve this
shortcoming.

1.4 The Solution of Lebesgue

The Jordan non-measurable set in Example 1.8 appears to have a sensible notion of “length.”
Indeed, the complement U , being a disjoint union of intervals, could be reasonably assigned as
a “length” the sum of the lengths of the (countably many) intervals of which it is made. This
produces a value of 1

2 for the length of U , and so we should take K to also have length 1
2 , since

K ⊔ U = [0, 1] is an interval of length 1. The feature that U is a disjoint union of intervals turns
out to not be any special feature of U at all but instead a general feature of open sets in R.

Proposition 1.11. Let U ⊆ R be an open set. Then U can be expressed as a countable disjoint
union of open intervals.

Proof. Problem 1.2.

By Proposition 1.11, it seems reasonable to define the length of an open set U ⊆ R as follows.
Write U = (a1, b1) ⊔ (a2, b2) ⊔ . . . as a disjoint union of open intervals, and define its length as
(b1−a1)+(b2−a2)+ . . . . Then open sets may play the role that simple sets played in the definition
of the Jordan content, and this leads to the Lebesgue measure.

Remark 1.12. In higher dimensions, Proposition 1.11 needs to be modified, but one can still
reasonably talk about the d-dimensional volume of open sets in Rd. See Problems 1.3 and 1.4.

Definition 1.13. Let E ⊆ Rd.

• The outer Lebesgue measure of E is the quantity

λ∗(E) = inf {Vol(U) : U ⊇ E is open}

= inf


∞∑
j=1

Vol(Bj) : B1, B2, . . . are boxes, and E ⊆
∞⋃
j=1

Bj

 .

• The set E is Lebesgue measurable (with Lebesgue measure λ(E) = λ∗(E)) if for every ε > 0,
there exists an open set U ⊆ Rd such that E ⊆ U and λ∗(U \ E) < ε.

Proposition 1.14. If E ⊆ Rd is Jordan measurable, then E is Lebesgue measurable and J(E) =
λ(E).

The family of Lebesgue measurable sets is much larger than the family of Jordan measurable
sets. Among the several nice properties of the Lebesgue measure (and abstract measures) that we
will see later in the course are:
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Proposition 1.15.

(1) If (En)n∈N are Lebesgue measurable sets, then
⋃∞

n=1En and
⋂∞

n=1En are Lebesgue measurable.

(2) If (En)n∈N are pairwise disjoint and Lebesgue measurable, then λ (
⊔∞

n=1En) =
∑∞

n=1 λ(En).

(3) If E1 ⊆ E2 ⊆ · · · ⊆ Rd are Lebesgue measurable sets, then λ (
⋃∞

n=1En) = limn→∞ λ(En).

(4) If E1 ⊇ E2 ⊇ . . . are Lebesgue measurable subsets of Rd and λ(E1) < ∞, then λ (
⋂∞

n=1En) =
limn→∞ λ(En).

1.5 Applications of Abstract Measure Theory

The mathematical language and tools encompassed in measure theory play a foundational role in
many other areas of mathematics. A highly abbreviated sampling follows.

Probability theory. Measure theory provides the axiomatic foundations of probability theory, pro-
viding rigorous notions of random variables and probabilities of events. Important limit laws (the
law of large numbers and central limit theorem, for example) are phrased mathematically using
measure-theoretic notions of convergence.

Fourier analysis. Periodic (say, continuous or Riemann-integrable) functions on the real line have
corresponding Fourier series representations f(x) ∼

∑
n∈Z f̂(n)e

2πinx. The functions e2πinx are or-

thonormal, and Parseval’s identity gives
∑

n∈Z |f̂(n)|2 =
∫ 1
0 |f(x)|2 dx. Given a sequence (an)n∈N,

one may ask whether
∑

n∈Z ane
2πinx is the Fourier expansion of some function f , and if so, what

properties does f have? Another natural question is whether the series
∑

n∈Z f̂(n)e
2πinx actually

converges to the function f , and if so, in which sense? Both of these questions are properly an-
swered in a measure-theoretic framework. If one is interested in decomposing functions defined on
other groups (for instance, on compact abelian groups) into their Fourier series, then one also needs
to develop a method of integrating functions on groups in order to compute Fourier coefficients and
make sense of Parseval’s identity.

Functional analysis and operator theory. When one studies familiar concepts from linear algebra in
infinite-dimensional spaces, measures become unavoidable for many tasks. For example, versions
of the spectral theorem (generalizing the representation of suitable matrices in terms of their eigen-
values and eigenvectors) for operators on infinite-dimensional spaces require the abstract notion of
a measure.

Ergodic theory. Ergodic theory was developed to study the long-term statistical behavior of dy-
namical (time-dependent) systems, providing a framework to resolve important problems in physics
related to the “ergodic hypothesis” in thermodynamics and the “stability” of the solar system. It
turns out that the appropriate mathematical formalism for understanding these problems comes
from abstract measure theory.

Fractal geometry. Self-similar geometric objects such as the Koch snowflake, Sierpiński carpet, and
the middle-thirds Cantor set (see Figure 1.5) can be meaningfully assigned a notion of “dimension”
that can take a non-integer value. How does one determine the dimension of a fractal object?
There are several different approaches to dimension, but one of the most popular is the Hausdorff
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Figure 1.5: Fractal shapes: the Koch snowflake (left) of Hausdorff dimension log 4
log 3 ≈ 1.26, Sierpiński

carpet (middle) of dimension log 8
log 3 ≈ 1.89, and middle-thirds Cantor set (right) of dimension log 2

log 3 ≈
0.63.

dimension, which relies on a family of measures that interpolate between the integer-dimensional
Lebesgue measures.

Additional Reading

This introductory chapter is heavily influenced by the book of Tao [1] on measure theory. Many of
the results in this chapter are discussed in greater detail in [1, Section 1.1].

1.6 Exercises

Problem 1.1. Show that J∗(Q∩ [0, 1]) = J∗([0, 1] \Q) = 1, and J∗(Q∩ [0, 1]) = J∗([0, 1] \Q) = 0.

Problem 1.2. Let U ⊆ R be an open set. Show that U can be written as a disjoint union of
countably many open intervals.

Problem 1.3. Let U = {(x, y) : x2 + y2 < 1} ⊆ R2 be the open unit disk. Show that U cannot be
expressed as a disjoint union of countably many open boxes.

Problem 1.4. Let U ⊆ Rd be an open set. Show that U can be written as a disjoint union of
countably many half-open boxes (i.e., sets of the form B =

∏d
i=1[ai, bi)).
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