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Chapter 1

Motivating Problems of Measure
Theory

1.1 The Problem of Measurement

A basic (and very old) problem in mathematics is to compute the size (length, area, volume) of
geometric objects. Areas of polygons and circles can be computed by elementary methods. More
complicated regions bounded by continuous curves can be attacked with methods from calculus.
But what about more general subsets of Euclidean space? Does it always make sense to talk about
the (hyper-)volume of a subset of R¢? What properties does volume have, and how do we compute
it?

We will consider these general questions as the “problem of measuremen
and discuss some approaches to a solution.

7

in Euclidean space

1.2 Riemann Integration and Jordan Content

A good first attempt at solving the problem of measurement comes from the Riemann theory of
integration. The basic strategy is to approximate general regions by finite collections of boxes (sets
of the form B = Hle [a;, bi]). For such a box B, we declare the volume to be Vol(B) = Hle (bi—ay)
and use this to define the volume of more general regions. We will now make this idea rigorous.

Definition 1.1. Let B = Hle[ai, b;] be a box in RY, and let f : B — R be a bounded function.

e A Darbouz partition of B is a family of finite sequences (z;;)1<i<d,0<j<n, Such that a; =
xio < xig < -+ < Tjn, =b; foreach i € {1,...,d}.

Figure 1.1: A Darboux partition in dimension d = 2 with n; = 4 and ns = 6.
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e Given a Darboux partition P = (;;)1<i<d,0<j<n; of B, the upper and lower Darboux sums
of f over B are given by

Us(f.P)= > sup f(zx)- Vol(By)

. xeB;
Jell {tms}

and
L P) = inf - Vol(B;
5(f.P) >, juf f(@)-Vol(By),
JEMT {1 ma}
where Bj is the box Hgl:ﬂxi,jflal'i,ji]a and Vol(Bj) = ngl(ﬂ%,ji — %;,j,—1) is the volume of
B;.

J
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Figure 1.2: Upper (red) and lower (blue) Darboux sums of a function f over an interval (d = 1).

e The upper and lower Darboux integral of f over B are

Up(f) = inf{Up(f, P) : P is a Darboux partition of B}
and

Lp(f) =sup{Lp(f,P): P is a Darboux partition of B}.

e The function f is Darbouz integrable over B if Ug(f) = Lp(f), and their common value is
called the Darboux integral of f over B and is denoted by [ f(x) dz.

Proposition 1.2. A function f is Darbouz integrable if and only if it is Riemann integrable.
Moreover, the value of the Darbouz integral and the Riemann integral (for a Riemann—Darbouz
integrable function) are the same.

Definition 1.3. A bounded set E C R% is a Jordan measurable set if 1 is Riemann-Darboux
integrable over a box containing E. The Jordan content of a Jordan measurable set E is the value
J(E) = |5 1g(x) dx, where B is any box containing F.

Jordan measurable sets include basic geometric objects such as polyhedra, conic sections, regions
bounded by finitely many smooth curves/surfaces, etc.

Definition 1.4. A set S C R? is a simple set if it is a finite union of boxes S = U§:1 B;.
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If the boxes Bi, ..., By are disjoint, then the volume of the simple set S = U§:1 Bj is Vol(S) =

Z§:1 Vol(Bj). If some of the boxes intersect, then the volume of S = U§:1 Bj can be computed
using inclusion-exclusion:

k
Vol(S) =Y Vol(Bj)— > Vol(B;NBj,)+ > Vol(Bj, NB;,NBy,)—...
j=1 1<j1<j2<k 1<51<52<43<k

This expression is well-defined, since the intersection of two boxes is again a box. A Jordan
measurable set is a set that is “well-approximated” by simple sets, as we will make precise now.

Definition 1.5. For a bounded set E C R?, define the inner and outer Jordan content by
J(E) =sup{Vol(S) : S C F is a simple set} .
and

J*(E) =inf {Vol(S) : S D E is a simple set} .
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Figure 1.3: Simple sets approximating the inner (red) and outer Jordan content (blue) of a region
in dimension d = 2. With the red boxes removed from the blue, we get a simple set covering the
boundary (in green).

Theorem 1.6. Let E C R? be a bounded set. The following are equivalent:
(i) E is Jordan measurable;

(ii) J(E) = J*(E) (in which case J(E) is equal to this same value);

(iii) J*(OF) = 0.

Proof. We will prove the d = 1 case. The multidimensional case is similar but more notationally
cumbersome, so we omit it to avoid additional technical details that would largely obscure the main
ideas.

(i) <= (ii). To establish this equivalence, it suffices to show
UB(]lE) = J*(E) and LB(ILE) = J*(E)

for any box (interval) B O E. Let us prove Ug(1g) = J*(E).

Claim: Up(1g) < J*(E).
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Let € > 0. Then from the definition of the outer Jordan content, there exists a simple set S C R
such that E C S and Vol(S) < J*(E) 4+ . By assumption, B is an interval containing F, so SN B
is also a simple set containing F, and Vol(S N B) < Vol(S) < J*(E) +¢. We may therefore assume
without loss of generality that S C B. Write B = [a,b] and S = [a1,b1| U [ag,ba] U - - U [an, by]
witha < a1 <by <as <by <---<ay, <b, <b We define a Darboux partitiorﬂ P of [a,b] by
P = (:Ul)?zoﬂ with zo = a, 1 = a1, x2 = b1, ..., Top_1 = ap, Ton = by, Topr1 = b. Then since
E C S, we have

2n+1
U(lg, P) = Z sup  1g(x)- (z;—xi—1)
i=1 zi—1<z<z;
SO-(al—a)—i—l-(bl—al)—l—o-(ag—bl)—i—---—l—l-(bn—an)—i—O-(b—bn)
— Vol(5).

Hence, Up(1g) < Up(1lg, P) < Vol(S) < J*(E) + . This proves the claim.

Let € > 0. Write B = [a, b]. Then there exists a Darboux partition a =z < x; < -+- <z, =0
such that Ug(1g, P) < Up(lg)+e. Let M; = sup,, | <,<,, 1e(z) € {0,1}, and note that, by defini-
tion, Ug(1g, P) = >0 M;(z;—xi—1). Let I C{1,...,n} betheset I = {1 <i<mn:M; =1}, and
let S = U,crli—1,2i]. Then S is a simple set with length Vol(S) = >, ;(#; — x;-1) = Up(1g, P).
Moreover, © C S, since S is the union of all intervals that have nonempty intersection with F.
Thus, J*(E) < VOI(S) = UB(]IE,P) < UB(HE) + €.

The identity Lp(1lg) = J«(F) is proved similarly.
(ii) <= (iii). It suffices to prove J*(9E) = J*(E) — J.(E). (See Figure [1.3])

Claim: J*(0F) < J*(E) — J.(E).

Let ¢ > 0. Let S1 be a simple set such that £ C S and Vol(S1) < J*(E) + 5. Since S is
closed, we have £/ C S1. Let Sz be a simple set with So C E such that Vol(S2) > J.(E) — 5. Note
that int(S2) C int(E). Therefore, S = Sy \ int(S1) is a simple set and OF = E \ int(E) C S, so
J*(OF) < Vol(S) = Vol(S2) — Vol(S1) < J*(F) — J.(E) + . But € was arbitrary, so we conclude
J*(OF) < J*(E) — J«(E).

Claim: J*(E) — J.(E) < J*(9E).

Let € > 0, and let S O OF be a simple set with Vol(S) < J*(0F) + 5. Write S = ||, [a;, bi]
with a1 <b; <ag <by <---<ap <by,. Let [a,b] C R such that E C [a,b] and a < a; and b < by,.
For notational convenience, let by = a and a,4+1 = b. Let I C {0,...,n} be the collection of indices
i such that (b;,a;41) N E # 0. For each i € I, we claim that (b;,a;+1) € E. If not, then (b;,a;11)
contains a boundary point of E, but O0F C S, so this is a contradiction. Thus, S" = J,;c;[bi, @it1]
is a simple set with int(S’) C E. Shrinking slightly each interval in S’, we obtain a simple set

3

S//: bz ; i =
LGJI[ T )Y T Mt

IStrictly speaking, this may fail to be a Darboux partition, since some of the points are allowed to coincide.
However, the value we compute for Ug (1 g, P) will be the correct value for the partition where we remove repetitions
of the same point.
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such that S” C E. Moreover, Vol(S”) > Vol(S’) — mm > Vol(S') — 5. Noting that SUS" is a
simple set containing E, we arrive at the inequality

J(E) = J.(E) < Vol(S U §") — Vol(8") = Vol(S) + Vol(S') — Vol(5") < J*(OE) + ¢

Example 1.7. The sets QN [0,1] and [0,1] \ Q are not Jordan measurable (see Problem [L.1)).

In addition to the above example, there are many other “nice” sets that are not Jordan mea-
surable. There are, for instance, bounded open sets in R that are not Jordan measurable. We will
work out one such example in detail.

Example 1.8. The complement U of the fat Cantor set (also known as the Smith—Volterra—
Cantor set) K C [0, 1] is Jordan non-measurable. We construct K iteratively, starting from [0, 1],
by removing intervals of length 4= at step n. In other words, at step n, we remove an interval of
length 4™" around each rational point with denominator 2".

Figure 1.4: Iterative construction of the fat Cantor set.

Let

oo 2™ .
27+1 1 27 +1 1
U= U U < on+l 9. gn+l’ ontl + 2_4n+1>‘
n=0j=1
Then K = [0,1]\ U.
The inner Jordan content of U is

oo 2" . . 00
2j +1 1 241 1 B
= ZZLGD ( on+1 o 9. 4n+1’ 9n+l + 2. 4n+1) = Z 4n+1 - ZQ
n=0 j=1 n=0

However, U = [0, 1] (since U contains every rational number whose denominator is a power of
2), so the outer Jordan content of U is J*(U) = J*(]0,1]) = 1.

1.3 Limits of Integrable Functions

You may recall from the theory of Riemann integration that uniform limits of Riemann integrable
functions are Riemann integrable, and one may in this case interchange the order of taking limits
and computing the integral. More precisely:

Theorem 1.9. Let B be a box in R?. Let (fn)nen be a sequence of Riemann integrable functions
on B, and suppose f, converges uniformly to a function f: B — R. Then f is Riemann integrable,
and

/f(a:) de = lim [ fu(x) deo
B B

n—o0

One of the deficiencies of the Riemann—Darboux—Jordan approach to integration and measure-
ment is that pointwise (non-uniform) limits do not share this property.
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Example 1.10. Enumerate the set QN [0,1] = {q1,q2,...}. Let f,, : [0,1] — [0, 1] be the function

fola) = {1, ifze{q,. ..,qn}

0, otherwise.

Then f, is Riemann integrable and f, — lgno,1] pointwise, but Igno ) is not Riemann integrable.

Since analysis so often deals with limits, it is desirable to develop a theory of integration
that accommodates pointwise limits. The Lebesgue measure and Lebesgue integral resolve this
shortcoming.

1.4 The Solution of Lebesgue

The Jordan non-measurable set in Example appears to have a sensible notion of “length.”
Indeed, the complement U, being a disjoint union of intervals, could be reasonably assigned as
a “length” the sum of the lengths of the (countably many) intervals of which it is made. This
produces a value of % for the length of U, and so we should take K to also have length %, since
K U U =[0,1] is an interval of length 1. The feature that U is a disjoint union of intervals turns
out to not be any special feature of U at all but instead a general feature of open sets in R.

Proposition 1.11. Let U C R be an open set. Then U can be expressed as a countable disjoint
union of open intervals.

Proof. Problem O

By Proposition [1.11] it seems reasonable to define the length of an open set U C R as follows.
Write U = (a1,b1) U (ag,by) Ll ... as a disjoint union of open intervals, and define its length as
(b1 —a1)+ (bg—ag)+.... Then open sets may play the role that simple sets played in the definition
of the Jordan content, and this leads to the Lebesgue measure.

Remark 1.12. In higher dimensions, Proposition [I.11| needs to be modified, but one can still
reasonably talk about the d-dimensional volume of open sets in R%. See Problems and

Definition 1.13. Let F C R<.

e The outer Lebesgue measure of E is the quantity

N (E) =inf {Vol(U) : U D E is open}

o oo
= inf ZVO](B]') : B1,Bs, ... are boxes, and F C U B
j=1 j=1

e The set E is Lebesque measurable (with Lebesgue measure A\(E) = A*(E)) if for every € > 0,
there exists an open set U C R? such that £ C U and \*(U \ E) < e.

Proposition 1.14. If E C R? is Jordan measurable, then E is Lebesque measurable and J(E) =
AME).

The family of Lebesgue measurable sets is much larger than the family of Jordan measurable
sets. Among the several nice properties of the Lebesgue measure (and abstract measures) that we
will see later in the course are:
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Proposition 1.15.

(1) If (En)nen are Lebesgue measurable sets, then \J,— | Eyn, and (,—; Ey, are Lebesgue measurable.
(2) If (Ey)nen are pairwise disjoint and Lebesque measurable, then A (02 En) =Y oo MEy).
(3) If Ey C By C -+ CR? are Lebesgue measurable sets, then A (S, En) = limy, 00 A(Ey).

(4) If Ey O B3 D ... are Lebesgue measurable subsets of R and A(E1) < 0o, then A (N2 En) =
limy, 00 A(Ey).

1.5 Applications of Abstract Measure Theory

The mathematical language and tools encompassed in measure theory play a foundational role in
many other areas of mathematics. A highly abbreviated sampling follows.

Probability theory. Measure theory provides the axiomatic foundations of probability theory, pro-
viding rigorous notions of random variables and probabilities of events. Important limit laws (the
law of large numbers and central limit theorem, for example) are phrased mathematically using
measure-theoretic notions of convergence.

Fourier analysis. Periodic (say, continuous or Riemann-integrable) functions on the real line have
corresponding Fourier series representations f(z) ~ Y, o, f(n)e*™™*. The functions e*™"* are or-

thonormal, and Parseval’s identity gives ) 1f(n)|? = fol |f(z)|? dz. Given a sequence (ay,)nen,
one may ask whether ) ., ane®™ is the Fourier expansion of some function f, and if so, what
properties does f have? Another natural question is whether the series ), f(n)e2™ne actually
converges to the function f, and if so, in which sense? Both of these questions are properly an-
swered in a measure-theoretic framework. If one is interested in decomposing functions defined on
other groups (for instance, on compact abelian groups) into their Fourier series, then one also needs
to develop a method of integrating functions on groups in order to compute Fourier coefficients and

make sense of Parseval’s identity.

Functional analysis and operator theory. When one studies familiar concepts from linear algebra in
infinite-dimensional spaces, measures become unavoidable for many tasks. For example, versions
of the spectral theorem (generalizing the representation of suitable matrices in terms of their eigen-
values and eigenvectors) for operators on infinite-dimensional spaces require the abstract notion of
a measure.

Ergodic theory. Ergodic theory was developed to study the long-term statistical behavior of dy-
namical (time-dependent) systems, providing a framework to resolve important problems in physics
related to the “ergodic hypothesis” in thermodynamics and the “stability” of the solar system. It
turns out that the appropriate mathematical formalism for understanding these problems comes
from abstract measure theory.

Fractal geometry. Self-similar geometric objects such as the Koch snowflake, Sierpiniski carpet, and
the middle-thirds Cantor set (see Figure can be meaningfully assigned a notion of “dimension”
that can take a non-integer value. How does one determine the dimension of a fractal object?
There are several different approaches to dimension, but one of the most popular is the Hausdorff
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log4
log 3

carpet (middle) of dimension %gég ~ 1.89, and middle-thirds Cantor set (right) of dimension }gég 2
0.63.

Figure 1.5: Fractal shapes: the Koch snowflake (left) of Hausdorff dimension

~ 1.26, Sierpinski

dimension, which relies on a family of measures that interpolate between the integer-dimensional
Lebesgue measures.

Additional Reading

This introductory chapter is heavily influenced by the book of Tao [I] on measure theory. Many of
the results in this chapter are discussed in greater detail in [I, Section 1.1].

1.6 Exercises
Problem 1.1. Show that J*(QN[0,1]) = J*([0,1]\ Q) = 1, and J,(QN[0,1]) = J.([0,1]\ Q) = 0.

Problem 1.2. Let U C R be an open set. Show that U can be written as a disjoint union of
countably many open intervals.

Problem 1.3. Let U = {(z,y) : % + y? < 1} C R? be the open unit disk. Show that U cannot be
expressed as a disjoint union of countably many open boxes.

Problem 1.4. Let U C R? be an open set. Show that U can be written as a disjoint union of
countably many half-open boxes (i.e., sets of the form B = H?zl[ai, bi)).
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